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Borut Zupančič a, Barbara Mohar a,*, Michel Stephan a,b,*

a Laboratory of Organic and Medicinal Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
b PhosPhoenix SARL, 115, rue de l’Abbé Groult, F-75015 Paris, France

a r t i c l e i n f o a b s t r a c t
Article history:
Received 14 September 2009
Revised 13 October 2009
Accepted 16 October 2009
Available online 22 October 2009

Keywords:
Asymmetric catalysis
Hydrogenation
P Ligands
Rhodium
0040-4039/$ - see front matter � 2009 Elsevier Ltd. A
doi:10.1016/j.tetlet.2009.10.088

* Corresponding authors.
E-mail addresses: mstephan@phosphoenix.com, m

phan).
A series of P-stereogenic enantiopure 1,2-bis[(aryl)(phenyl)phosphino]ethane ligands was prepared
through an extensive systematic incorporation of various substituents onto the P-o-anisyl rings of Know-
les’ DiPAMP (DiPAMP = 1,2-bis[(o-anisyl)(phenyl)phosphino]ethane). The study of incidence of such
modification on the Rh(I)-catalyzed hydrogenation of a-acetamidostyrene is reported revealing that
substitution on position 3 is detrimental, while it is beneficial on position 5. Namely, a 2.5-fold increased
catalyst activity coupled with a higher enantioselectivity (90% ee) was attained with the P-(2-MeO-3-
naphthyl)-substituted ligand under mild conditions (1 bar H2, rt in MeOH).

� 2009 Elsevier Ltd. All rights reserved.
In their P-stereogenic phosphine ligand optimization for the
Rh(I)-catalyzed L-DOPA process, Knowles and co-workers’ chelating
DiPAMP ligand (DiPAMP = 1,2-bis[(o-anisyl)(phenyl)phosphino]-
ethane) proved to be less sensitive to impurities and reaction
variables compared to monophosphines.1 Since their pioneering re-
search, a relatively small group of P-stereogenic diphosphines
emerged compared to the plethora of stereogenic backbone ones.2

Design of P-stereogenic bis(diarylphosphino)-containing ligands
has been sporadic,3 while the interest in P-stereogenic phosphine li-
gands has been progressively revitalized due to advances in efficient
synthetic strategies towards them.3c–e,m,4 In particular, the mile-
stone contribution to Rh(I)-catalyzed asymmetric hydrogenation
by Zhang5 and Imamoto6 groups was highlighted by the introduc-
tion of the aliphatic TangPhos, BisP*, and MiniPHOS diphosphines.
Interestingly, by contrast to the early explored and commonly
accepted unsaturate Rh-DiPAMP hydrogenation route of a-acetam-
idocinnamates,7 an extensive mechanistic study by Gridnev et al.
pointed out an underlying solvate dihydride pathway using the
electron-rich BisP* with a-substituted acetamidoethylenes.6b

Moreover, we have recently shown that mutant DiPAMP-type
ligands, particularly our 4MeBigFUS ligand (4MeBigFUS = 1,2-bis
[(phenyl)(2,3,4,5-tetramethoxyphenyl)phosphino]ethane), boosted
the Rh(I)-catalyzed hydrogenation of a variety of olefins compared
to the original Knowles’ mid-70s design.8
ll rights reserved.
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Rh(I)-Catalyzed asymmetric hydrogenation of a-acetamidosty-
renes is a powerful method to prepare a variety of chiral a-aryl

amines.4b,5a,6d,9 To our knowledge, sparse study-cases exist that
are targeted to understanding the effect of variations brought to
a ligand structure on hydrogenation.4b,9i P-Stereogenic tetraarylic
diphosphines are easy to prepare, handle, and store, less capricious
to reaction parameters (solvent, temperature, pressure, etc.), and
could be readily accessible in both enantiomeric forms. Further-
more, few P-stereogenic tetraarylic diphosphines were prepared
wherein the substituted phenyl rings were devoid of o-substitu-
ents (as for example P-b-naphthyl), and to a lesser extent their
testing in Rh-catalyzed hydrogenation was reported.3c–e In the
present work, we aimed to study the impact of a systematic incor-
poration of various substituents onto the P-o-anisyl groups of DiP-
AMP, in addition to the effect on hydrogenation of meta- and/or
para-MeO substituents of its analogs.

In our ongoing research program on stereogenic phosphines,3m,p,4c

we present hereafter our in-depth study of the Rh(I)-catalyzed hydro-
genation of the model substrate a-acetamidostyrene employing a
large series of P-stereogenic 1,2-bis(diphenylphosphino)ethane
derivatives.

By analogy to our previously disclosed library of DiPAMP deriv-
atives,3p the screened new enantiopure P-stereogenic ligands were
readily prepared in high overall yields via the Jugé–Stephan



Table 1
[Rh((R,R)-L*)(MeOH)2]BF4 catalyzed hydrogenation of a-acetamidostyrenea

NHAcPh

Me

NHAcPh

[Rh(R,R)-L*]+ / H2 (1 bar)
MeOH, rt (S)

(R,R)-L*:

1-16

PAr
Ph

P Ph
Ar

L* Ar Time (min) ee (%)

DiPAMP 2-MeO-Ph 13 83
1 3-MeO-Ph 6 1
2 4-MeO-Ph 5 15
3 3,4-di(MeO)Ph 7 27
4 3,5-di(MeO)Ph 7 5
5 2,3-di(MeO)Ph 4 71
6 2-MeO-3-iPrO-Ph 4 71
7 2,4-di(MeO)Ph 18 88
8 2,5-di(MeO)Ph 7 88
9 2,3,4-tri(MeO)Ph 4 71
10 2,3,4,5-tetra(MeO)Ph 4 87
11 2-MeO-3-TMS-Ph 7 83
12 2-MeO-3,5-di(tBu)Ph 9 80

13

MeO
OMe

Me
7 69

14 (2-MeO-3-Ph)Ph 8 65

15

MeO
6 72

16
OMe

5 90
45b 90

a For convenient comparison of the catalysts’ activities, the induction period was
eliminated by preforming the catalysts in situ. Runs were carried out with 0.5 mmol
of a-acetamidostyrene in 7.5 mL MeOH with a substrate/catalyst molar ratio (S/C)
of 100 at 25 �C for the time indicated (100% conversion). Conversion and ee were
determined by GC on CP-Chiralsil-DEX CB column.

b S/C = 1000.

Table 2
Solvent and pressure dependencea

Solvent pH2 (bar) Time (min) ee (%)

MeOH 1 5 90
MeOH 1 12b 91
MeOH 1 4c 85
MeOH 10 5 89
MeOH 20 5 89
EtOH 1 7 90
iPrOH 1 8 91
EtOAc 1 8 87
Acetone 1 6 88
THF 1 17 88
CH2Cl2 1 12 88
CHCl3 1 13 88
Toluene 1 25 87

a Runs were carried out under conditions of Table 1. For runs under 10 or 20 bar
H2, the reaction mixture was only analyzed after 5 min (100% conversion).

b
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phosphine-P-borane asymmetric route.3c This expedient route re-
lies upon the sequential displacement of the ephedrine auxiliary
from the 1,3,2-oxazaphospholidine-2-borane complex (oxazaPB)
with organolithium reagents and both enantiomers can be attained
starting from either (+)- or (�)-ephedrine (Scheme 1).

The preliminary screening results of the Rh(I)-catalyzed hydro-
genation of a-acetamidostyrene using diphosphines L* 1–16 are
compiled in Table 1 and correspond to un-optimized reaction con-
ditions. The observed sense of enantioselection is the same as with
DiPAMP.

The ligands 11 (Ar = 2-MeO-3-TMS-Ph) and 12 (Ar = 2-MeO-3,5-
di(tBu)Ph) yielded 83 and 80% ee, respectively, which is in the
same range as obtained with DiPAMP (83% ee) but with faster reac-
tion rates. Also, the o-unsubstituted ligands 1–4 exhibited twofold
faster reaction rates compared to DiPAMP, with the best ee of up to
27% being attained with ligand 3 bearing P-[3,4-di(MeO)Ph]
groups. Thus, albeit low, still a perceptible level of asymmetric bias
was reached using ligands devoid of o-substituents on the P-phen-
yls of P-stereogenic 1,2-bis(diphenylphosphino)ethane derivatives.
The results transpire also that the p-MeO substituent has a benefi-
cial influence compared to the m-MeO substituent.

Ligand 14 possessing a phenyl substituent at position 3 of the
o-anisyl moiety gave low ee (65%) versus 80–83% ee with ligands
11 and 12 possessing a TMS or tBu group, respectively, at the same
position. Ligands 5 and 6 possessing a MeO or iPrO group at posi-
tion 3 on the one hand, and ligands 9, 13, and 15 possessing MeO
groups or a fused cycle at positions 3 and 4 on the other hand, fur-
nished ees in the narrow range of 69–72%. This reflects that the
variations brought to DiPAMP at position 3 are to a certain extent
detrimental. Conversely, ligands 7, 8, and 16 with no substituent at
position 3 exerted a slightly higher ee (88–90%) compared to DiP-
AMP. It is also noticeable that ligand 7 bearing a P-[2,4-di(MeO)Ph]
group led to a protracted reaction time, probably attributable to
the nature of the electron-donating MeO group at para-position
to the phosphorous atom; the reverse effect was encountered with
the ligand 16 wherein Ar = 2-MeO-3-naphthyl. Noteworthy, the
87% ee achieved with ligand 10 (4MeBigFUS; Ar = 2,3,4,5-tetra
(MeO)Ph) versus the 71% ee with ligand 5 (2MeBigFUS) or 9
(3MeBigFUS) points out the beneficial incidence of the MeO group
at position 5 as also observed with ligand 8 (Ar = 2,5-di(MeO)Ph).
We believe that the steric effect engaging the ortho-MeO group is
responsible for the observed decrease in enantioselectivity in case
of a substituent on position 3, and that an electronic effect on
position 5 influencing the basicity of the phosphorus atom is
responsible for the increase in enantioselectivity. Thus, in the P-
(2-MeO-3-naphthyl)-substituted ligand 16, steric and electronic
effects are acting in concert in favor of a higher enantioselectivity
and activity of the Rh(I)-catalyst.

Next, we have investigated the susceptibility of [Rh(L* 16)]+-
catalyzed hydrogenation to reaction parameters (Table 2). An
enantiomeric excess in the range of 87–91% was maintained in var-
ious reaction media; however, protracted reaction times occurred
in THF, CH2Cl2, and CHCl3 (probably due to H2 gas solubility10a),
and in toluene (aromatic solvents are known to inhibit hydrogena-
BH3
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Scheme 1. Synthesis of 1,2-bis[(aryl)(phenyl)phosphino]ethane ligands (R,R)-L* 1–
16. Reagents and conditions: (a) ArLi, THF, �20 �C to rt; (b) MeOH, H2SO4, rt; (c)
MeLi, THF, �20 �C to rt; (d) sBuLi, THF, �30 �C, then CuCl2, �30 �C; (e) Et2NH, 55–
60 �C.

Hydrogenation at 0 �C.
c Hydrogenation at 50 �C.
tion10b). Also, carrying out the reaction at 0 �C in MeOH did not af-
fect the ee much, but a noticeable drop in enantioselectivity (85%
ee) occurred at 50 �C. In general, H2 pressure markedly affects
the hydrogenation,10c but interestingly with L* 16 an 89% ee was
maintained up to 20 bar of H2.

In conclusion, we have prepared a large series of enantiomeri-
cally pure P-stereogenic 1,2-bis[(aryl)(phenyl)phosphino]ethane
ligands through a systematic modification of the P-o-anisyl rings
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of DiPAMP. Their screening in the Rh(I)-catalyzed hydrogenation of
a-acetamidostyrene identified the P-(2-MeO-3-naphthyl)-substi-
tuted ligand which led to 90% ee coupled with 2.5-fold shorter
reaction time under mild conditions (1 bar H2, rt). In addition, this
study revealed that for this substrate, substitution on position 3 of
the P-o-anisyl rings is detrimental while it is beneficial on position
5. It seems that an increased steric effect on position 3 has a neg-
ative effect on enantioselectivity, while substituents on position 5
can exert an increase in enantioselectivity due to electronic rea-
sons. Catalysis continues to be a very sensitive function of ligand
structure and key challenges remain associated with the complex-
ity of rational design of an optimum ligand. The P-(2-MeO-3-naph-
thyl) groups of the ligand increase its overall steric requirements
and we believe that they induce a favored conformation of its
Rh(I) complex which may facilitate the turnover-limiting and
enantiodetermining H2 oxidative-addition step. Nevertheless, cau-
tion should be exercised in extrapolation of these results to other
a-acetamidostyrenes as changes in a substrate structure could
necessitate other requirements/matching for the catalyst.11 Ongo-
ing progress in our group in this area shall be communicated in due
time.
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